
k -f1?9 27 ON THE CYCLOILITY OF K-COIECTED (K+1)-REOt.M inIU i
(U) YRE3ILT IV WISNYILLE TM DEPT OF MTI6ITICS
0 A HOLTO ET AL RIM 96 ftP-6 NUI4-S5-K-NS

UNCLRSSIFIED F/0S WI ML

mmhhhhhh



' H 'L-m I L1*13

11 -24 -
- ,

IIi



0

NC

>A. Iol::n and X.,- ?Lu~er

Research ?aoer No

AuguSt L?8-
1 8 j



ON THE CYCLABILITY OF

k-CONNECTED (k+l)-REGULAR GRAPHS

by 4

D.A. Holton

Department of Mathematics

University of Otago

Dunedin, New Zealand

M.D. Plummer*- 4

Department of Mathematics

Vanderbilt University-

Nashville, Tennessee 37235

U.S.A. 6

July 1986

('CTrfl

*Research supported by NSF - New Zealand Cooperative Science Grant No. INT-8521818, ONR COzntrac:

No. N00014-85-K-0488, and the University of Otago while in residence as a William Evans Visiting Fellow.



1. - - --. 4 -

In the past fifteen years or so, there have been quite a number of papers dealing with variations on

the following general theme. Given a graph G and a positive integer m, m 5 JV(G), find non-trivial

conditions on G which will guarantee that given a set S = . ...., vmJ _ V(G) , there exists a cycle CS

containing S. In the special case m - JV(G)J, we are dealing with conditions for the existence of
Hamiltonian cycles, in itself a subject studied extensively by many graph theorists.

For the most recent survey of the subject for general m, the reader is directed to Holton (19831 and
Plummer (1983). In particular, some interesting questions remain unsettled in the special case of regular

graphs. Let C(m) denote the class of all graphs which have the property that every set of m points lie on

some cycle. The largest m for which G E C(m) is called the cyiabity of G. Now suppose k 2! 3 and let

f(k) denote the largest integer j such that in every k-connected k-regular graph every j ;oints lie on

some cycle. It was proved by Holton (1982) and independently by Kelmans and Lomonosov (1982a) that
f(k) >, k + 4. This lower bound for f(k) is not believed to be best possible. For example, Holton, McKay, '

Plummer and Thomassen (1984) proved that f(3) = 9. This result was also obtained by Kelmans and

Lomonosov independently and announced without proof in (1982a). Meedith (1973) constructed an
infinite family of graphs which show, among other things, that F(k) _ 10k - 11. Thus a rather large gap in

possible values for f(k) remains at this writing. Recently, McQuaig and Rosenfeld (1984) have shown that - "

for all even k _ 4, there are infinite families of k-connected k-regular graphs with cycla ilities 6k - 4 wlnen

k-O (mod 4) and 8k - 5 when k = 2 (mod 4).

More recently, interest has been generated In the related question of cyclability of k-connected

r-regular graphs for r >_ k + 1 . First of all, Dirac (1960) proved that for any k-connected graph, regular or 7c*.

the cyclability is at least k. It is interesting to note that in the case of k-connected (k + I)-regular graphs
having k even, the Dirac bound cannot be improved. To see this, consider the complete bicartite grarh

Kk, k+1 where the bipartition sets U and W have JUI = k and IWI = k + I respectively. The cyclability of

Kk, k+1 is clearly k. We can easily modify Kk, k+1 to yield a graph Hk which is k-connected and
4

(k +1)-regular by replacing each point of W by a copy of the graph obtained from Kk, 2 by deleting a

matching of cardinality k . (Figure 1.1 shows how this is done for k = 4.)

i
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Figure 1.1

More generally, with k still even, but r .k + I , Holton (1982) has constructed other graphis which are

k-connected and r-regular, but which do not lie in C~k + 1) and hence have cyclabillity precisely k.

Now suppose k is odd. If r -a k + 2 ,Holton (1982) has constructed k-connected r-regular graphs

which do not lie in C(k + 1) .This, again together with Dirac's bound, shows that any k-connected r-regular

graph has cyclabiflty =k , as long as k is odd and r !k +2.

So in a sense, the only case left unsettled here is that of k-connected (k + 1)-regular graphs for k 3

and k odd.

"1

One can do a bit better than the Dirac bound here as was shown by Holton (1982), and independently

by Kelmans and Lomonosov (1982b), via the following result.

T1. In any k-connected (k + 1)-regular graph with k 3 and odd, any k P 2 pointsie on a

cydle.

'p

Thus the cycaility of such graphs is bounded below by k + 2.

In fact, Kelmans and Lomonosov (1982b) claimed that the concusion of Theorem 11 can be improved

to k + 3, but this claim is false, at least for k = 3 . For a counterexample due to the present authors, see

Holton, (1983). Since Kelmans and Lomonosov did not publish the proof of the k -3 bound, the situation

grap ha ctbil =k, a log a k i od an r >_ k 2

- -- ...-.-..... -
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for k odd and k a 5 is presently unknown, at leas to the present authors. In his )982 Paper. Hoton goes

on to show that if k is odd and k 2 3 anid if h(k) is the largest postve integer m for which all k-connected "

(k + -regJlar graps ie in C(m), then h(k) S .9k

In the present paper, we will prove that, in tact, h(k) : 2k - 1 . (This result was announced without .

proof by Holton (1983).) To accomplish this, we shall construct, given k Z 3 and odd, a graph Gk which is '.

k-connected and (k + 1)-regular. but which has a set of 2k points which do not lie on a common cycle. The

procedure will be as follows. First we construct a graph G'k which is k-connected and which has all points k(

with degree either k or k + 1 , but which has a set of 2k points not lying on any cycle. Then we mocify G'k

first to obtain an intermediate graph G"k and then, in turn, modify G"k to obtain a k-connected
4P

(k + I)-regular graph Gk having a set of 2k points which le on no common cycle.

The construction is done in two slightly ditferent ways depending upon whether k S 1 (mod 4) c,

k S 3 (mod 4). The reader is encouraged to refer to graphs G'5 and G'7 to help understand the

constructions in general. (See Figure 2.1.)

.

2. The Constrution of G'k .3-

Let k > 3 be an odd integer. In all cases G'k will be a bipartte graph wrth bapartition (X Y V Z"

where

X Xo, x1  . Xk.l)

Y= (YO..Y-} ' = (Y' Y. Y-.
2 2

Z - {zo ...Zk, Z = (z' o ..., Z'k.1)

The lines in G'k are defined as follows. Every point of Y (respec:ively Y'" is adjacent tro ever'v xcirn .n

Z (respectively Z') . For the remaining adjacenc:es we split the description into two cases. Suppose k s
(mod 4). For each i =0 ... k - I, both zi and z', are adjacent to xi, xi 1, -i41 ... xi - - , xi k-I where

4 4

subscripts are taken modulo k. In the case in whach k 3 (mod 4), for i = 0. k - I. oth zi arnd Z', are

adjacent to xi, xi. 1,  - , xi+ k1  where again the subscripts are taken mcdulo k
4 4

The modulo k circular symmetry* for adjacerces among the xi 's, zi's and "k 's is imporlant to tear

in mind and will prove to drastically reduce the number of cases we will have to treat in order to prove that

G'k is k-connected.

• .4

.-,.' .-. -. ,- .-- ...-,. - ,-, , o-; ... .' . , ,... ' ','. '; .,•,- . - ,- . ..
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Finally, we note that G'3 is just the well-known Hershel graph.

3. The connectivt of G'k .

Notethatin Gk wehave egu - k foruE QZQZ anddegu - k+1 for uE X.

We now proceed to prove that G'k is k-connected. To this end, let u and v be two distnct points in

V(G). We must find k openly disjoint paths joining u and v. We shall refer to such a family of paths as

openly disjoint u - v paths. Here o (hereafter abbreviated as gC. means that the paths

joining u and v are otherwise pairwise point disjoint. We shall often refer to a set of k openly disjoint u - v

paths as a k-skein joining u and v (or as a u- y k-skein .

1. First suppose (u,v} S Y. Say u = Yo and v - Yi. Then yoyzol, yozlyl ..., Y0 z~k-y 1

suffices as the u - v k-skein. The k-connection between two points of Y' follows by symmetry.

2. Suppose u E Y and v E Y' . Without loss of generality, assume u Yo and v = y'O. Then

(Yozoxoz'oY'o. . Yozk-1xk-1z'k-1Y '01 suffices.

For the rest of the cases, we will treat the congruence classes k - I (mod 4) and k - 3 (mcd 4)

separately.

First suppose k S 1 (mod 4). (Thus k_ 5)

3a. Suppose u 6 Y and v E Z, say u =yo and v = Z k-i Note that for i =0,1...., -2, we have
2 2

zi adjacentto x k- . So let
4

Y -i ~ +iz k-1 for i= 0.
2

Y0 z k-1 .i Yi z ]- , fori =1 and let
2 2 2

R,= yoz and S, = Yo zkl ,x 3 Z k-
2 4 2

Then PO.  P a 1.Q - R1 ,S 1) is a u -v k-skein.
2 2



4a. Suppose u E Y and v E X Wtout loss of generality, suppose u yo and v x P

2 1*

Let F =-oZ- +yi - , for iO ..
4 2 2

Now let q -Yoi x &-+i zkI. +i x& , for iO,.... &
4 4 2 4

and let the "mirror images* of the 0's about the axis z -1 x k be
2 2 2

Ri - x &I Z'i X Z I + i Yo, for i-k*..... -
2 4 2 4

We then have a total of &-a + - + & - = k o.d. u -v paths as desired.
2 4 2 2

5a. Suppose u 6 Y and u E Z. Without loss of generality, let u = Yo and v - z' k-t Then let
2

F =YOzk.1+i xk.1 + 0. 1- 

4 4 2 2 ',.

q =Yo Zi x Zi Yi f , k, and et
2 4

Ri = YO Z + i x for iO .
4 4 4 4 2 4

We then have a total of k-1l + + k-1 k o d. u - v paths as sought.
2 4 4

6a. Suppose u and v are both in Z.

p,.

First note that any pair of zi's have at ;east one common neighbour in X (and in fact, there are pairs of zi's

which have exactly one common neighbour). For example, (and for the sake of symmetry when working
with the drawing in this case) let u = z k-. and let v = z Now let

Pi= z k iz 3- i =0,... ; and let
4 4 2

P -1 = z &I xk z. Next let
2 4 4 4

Q-Z- xi ziz' k+ i x jal + Z a for i=O... '.

4 2 2 4 2

, ' 55* % *,.. .

Pp, ,., ,''''' ,,,,.,.,,,,., ° "". ,,''''.'."- ,.. '." " "Six " " . -. *.. " . ". " " - ", "
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Then we have a total of & s1 . , k o.d. u- v paths as desired.

2 2

Now if the two zi's chosen for u and v have r ? 2 common neighbours in X then in addition to the

k±J paths of type P1 above we get r-1 more of the form uxjv. Taking these together with 1-1.- (r-1) of
2 2
type a, above, we get a total of k.j + r-1 + &I - (r-i) - k o.d. u - v paths as desired.

-2 2

7a. Suppose u E Z and v E X. Without loss of generalty, assume u =z There are now two

cases to consider. 2

First suppose that v r r(u) n X = E(z r ) X. (Here and throughout the rest of this paper 7(u)
2

denotes the neighbourhood of u .) Let M denote the "vertical" matching of r (z - ) into all lines of
2

which are of the form xi z' i . Then IMI =kt and we can find k+ o.d. u - v paths using V

2 2
M, r of them of length 3 where r is the number of neighbours of v in Z which are covered by M and

k+t - r of length 5 which are of the form v Zj Y'k Z'm Xm z k-1 , where z'm xm E M, but z'm E F',v) r- Z.
2 "

On the other hand, v always has at least k+1 - 1 = k-1 neighbours in Z which are not equal to z L, and
2 2 2

these can be used to form an additional j. o.d. u - v paths. Again, then, we get k_ = k o.d. j-v
2 2 2

paths as required.

So we may suppose that v . (u) n X = F(z n )'X. This time we ave k-l o.d. u - v paths of
2 2

length 3 of form z k- yi zj v, the line z k-i v and k-i additional paths of length 3 or 5 cttaire( as
2 2 2

follows. Consider the matching M, of r(u) n x "vertically" into Z ; that is, all lines of M' are of the form

xi z' i . Delete from M' the line covering v and denote by M" the resulting matching of size k-. Now :t
2

M" covers a neighbour of v we get a path of length 3, while if a line e of M" does not cover a pcint zt

r (v) n Z , we can find a u - v path of length 5 using e by detouring through Y'.

Now if u and v have r 2 common neighbours, then it is easy to see that there is still a set of k-i

2
u - v paths of length 2 or 4 where the paths of length 4 are of the form z k-t Yj Zm Xm Z'i , where

2
z = u and z'i = v. Then one can find an additional k1 - r u - v paths of length 4 of the form

2 2
Z k- XmZ'mYjZ'i and the remaining k- r+±k+-r + k+ 1-r = r -1 paths of length 6 having the form

2 2 2
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8a. Suppose u E Z and v E Z". Without loss of generality, let u - z Now note that regardless
2

ofwtere v isinset Z', r - J(ru) n X) n (r(v) n X)I> 0. Solet s1 - (ru)rnX) - (11v)r nX)I, let

s2 - r(u) n X) - (r(v) r)X )I and s 3 - IX - (r(u) i F-(v))i. Then dearly r + s, + s 2 + s3 = k. Those memberc

ct X counted by r give rise to r o.d. u - v paths of length 2. For each point xi of X counted by s1 take

Ine xiz' i for each counted by s2 take line x izi and for each counted by s3 take the path

zi xi z'i . The lines xi z' i counted by s, give rise to u - v paths of length 4 all of form u xi z'i y'j v those

counted by s2 yield u - v paths of length 4 of form u yj zi xi v and those counted by s3 yield u - v paths

of length 6 all of the form u Y1 zi xi z' i yj v. Altogether, these form a collection of k o.d. u - v paths.

9a. Finally, suppose both u and v E X. Let u= x and v xj. Consider r (x i) r Z = NZ(x i)

If zm E NZ(xi) then if it is also in r(xj ) n Z = NZ(xi) we have a path of length 2 - namely xi zm xj - joining

xi and x1 . Cn the other hand, if Zm, 6 NZ(x i - NZ(xi) then we have a path of length 4 - namely

xi Zm Yn Zs xj - joining xi and xj. This yields a total of _±I. o.d. u - v paths and they all lie within
2

G'k[X ky Z J Y]. But clearly there is a second set of .. o.d. u - v paths (the reflections of the first set cf
2

paths in the X axis) which, together with the first set yields a total of k +1 o.d. u - v paths as scugnt.

Now let us suppose k 3 (mcd 4).

3b. Suppose u - Y and v 7 . Without loss of generality, suppose u= yo and v =z

2

Let P uy0zx kl i z k-, fori=0.
4 2 2

= yoZ . , iYi z . fcr i= . .. - ,

2 2 2

R1 =y 0 z E and S1  Yo -Jx :L. Zyi
2 4 2

Then (PO ... P ,1 Q - ,R S is a k-skein cinrrg u and v
2 2



4b. Suppose u 6 Y and vE X. Without loss of generalty, suppose u - yo and v x
2

Let -y6 zk-+x-, y- z + . Nowd k*3, let
4 2 2

Y= 0Z E+ +i z '  + i x i0,..., &Z andit k=3, let Qo -.o.
4 4 2 4

Also let i  x} 1 z 1 z'ei )q' z k± + i Y0 . for We then have
2 4 2 4

a total of tj. +- +3- - - k o.d. u-v nes in all cases.
2 4 4 2

5b. Suppose u 6 Y and v Z'. Without loss of generafity, let u =yo and v =z'

2

Thenlet F =y z  + i x + f -I for i=0,.....
4 4 2 2

SYo zixiziYi - fori=O,...,. , and
2 4

andlet Ri-= yo z  +i x 2 +i z 3k+ i Y' k±1 i z' -1 for i=0, Z when k_>7 .
4 4 4 4 2 4

(For k=3, let R3 =

We then have a total of k4-1 *- + L = k o.d. u - v paths as desired.
2 4 4

6b. Suppose u and v are both in Z. Again, as in 6a, note that every pair cf xi's nhave at eas :re

common neigntbcur in X and in fact there are pairs wth exactly common neighbour. Let u = : n arc

v =z for example.
4

First suppose k > 7.

Now :et

= Z - Yi Z - , 10 .. , and~et
4 4 2

P k- = z & x k-z Next!et
2 4 2 4

Sz U3 xi t'i 'tit k+ +i x k, + i z 2L&5 for i= . k-3
4 2 2 4 2

............. .............................. .. . .... -. - -. -,, ., ',..,-,.-,',-','.-., - ... ,'....... . ,.....................................,......,..,......,...*,... ....-



i hus we obtain atotal of I I k ocd. u -v paths as desired. If k 3 then 3 o.d. u -v paths

are obvious.

Now if k 2: 7 and the 2 ' s chosen for u and v have r 2 common neighbours in X ,then in addition to

the &-ij. paths of type Pi above, we get r - Imore of the form u xj v. Taking th~ese together
2

with ~j (r -) of type a, above, we get atotal oft ~t1+ r -I + k-1 - (r -1) k o.d. u-vY paths as desired.
2 2 2

The proofs of Cases 7 (u E Z, v~ X) 8b (u E Z ,yvE Z) and 9b (u~v E X) areidentica to those for

Cases 7a, 8a and Gla respectively.

This com;ptetes the proof that G'k is k-connected.-

4. The Ccnstructijon cf Gk.

Recal: Aat in graph Gk each point in Y Ir k- Z Z has degree k, while each point in X has -

degree k I . We now proceed to construct a k + -regular graph Gk from G'k as follows.

Frst oons;Cer eacti irnejcining some Yj Y to a :- z Z. insert a new Thnidpcint" on this ire and caL t

a'I Siial, nsert a m7idpc:nt j on eachre coining a zi to an xi. Midpoints are s~m ilarlv nsertcd on

nes ciring a y' to a z)and on ines oning a z' to an xj T"hey are cailed c' and 3'j respec' veiy.

Ncw we replace each point of Y 'jY' Z j Z with a set of points as follows.

Eirst sucpose k E mcd 4) For cacti '0 _ -5 replace yi ty a set Aj of 2k new points cined
2

,wo by !wo "o 7i~cirts a0  -, . k eseieyNw eic y y a set S k~cnitinrg
2 2

f2kpoints. K --f thnem cined one a: a ',:re *o eac.n a fcr j 3, C k-1 and :he rernaining k cine,

22

to~ ~~~p% yet ante new ~'t~F~Aceteys hst 1 ad2 nasmen anr



Next, replace each z- 6Z withia set C1 of pointsas follows. For each lne ofthe formn i zfor *

2

insert k-i new points into Cj and join each to aq*. Also replace a , j z with an addhnal 1K new pcinis
2

Furthermore, for each mne of the form 5lr Xr, -nsert k new points into C, and join each to 3,r See Figure

4.1a.) Thus altogether, C1 contains JL-M (k-) +k + LK±IJk poin~ts, whicri since k rxd 41 s

2 2 2

an even number.

Thus when k 1 (mod 4), all of the sets A , C] and B contain an even numter :1 citS,
2

"Mirror image' sets A'i B ' , and point b' are construce- anac0gcLSy'
2

Now since each of the sets A~A'i B B' C1 C, have mncre Tan cxTs a-c eacn s

2 2

even, we may invoke Lemma 4a of Wang and Kleitman 1l973) to ccnctujce *.hat Th1ere e3x:s,,s a -ne:

k-regular graph on each of these sets of points. Insert such a k-regular -racri CT, eachi sucn :cirt set

Finally, join points b and b' . Cearty, the resuilting graph Gk is k-4.1 >regutar

Now suppose k 3 1mod 4) !n this case, ove can =rnsirct a k-regU-ar 2 nS e-

than that built for the case k EI (mod 4) in that no 'soecai reCoiacemrnen 'cr ~s "ecessa.

In G'V insert mridpoin-ts a1j and as o-etcre Fcr e2acn i= -''ce ::,4 ~~.:
2

points joined two by two to each a.. Replace eachr z; tv a set C, :crss;ng :t C~'- -e,:*

time to each of The - diflerent j, 's A~sc ac ." c;:c. c-t C-
2 2

of the diff erent .3i 's . ,See Fgure 4.:b

Once again c--nstruct, The 'mn'cr mage' 3~ a-, 3-,3.

Now each A- and A', contains 2lk poirts %r-,!e e *., ar-c &* :cru,.rs .~.p-.

k+1) points which is also an even nuMter SirCe K 2- 3 -cc i, Thus 3gar ,-,h

result we can construct k-connected k-regular ;raphs -n eacn "ese sets y' eCe _2' r

(k+l)-regular graph G3k
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5. The Connectlty of Qk.

To prove that Gk is k-connected we proceed in two steps. First we consider an intermediate graph

Gk obtained from Gk by inserting only the Cj s. (Fromr this point on we shall denote the subgraphs

guaranteed by the Wang and Keitman resuftoan A, by <A>, on B by <B &-I> , etc,)

2 2

We now proceed to show Gk to be k-connected. Let u arid v be two distinct points in Gk.

Suppose first that neither u nor Y is a midpoint.

1. If u and v le in the same C1 then there exist k o.d. u - v paths iaj.since <C>is k-connected.

The analogous result holds when u and v lie in the same C'

2. If u and v le in two different Cfs, C'j's or one in a Ci and the other in a C* ,then there exist k o.d.

u - v paths since such a set of paths exists in Gk.- More -precisely, suppose u E Cu~ and v E Cv. in Cu tol

each midpoint adjacent to Cu choose a point in Cu different from u . (Henceforth we shall refer to such a

point as a L=j of this midpoint in Cu -) This is possible because each midpoint has at least k - 1 > 2

such feet in Cu - So the feet selected in this way form a set of k distinct points in Cu different from u.

,Now since < ,>is k-connectled by a well-known variation of Mengers Theorem, there exists a tan of

::atms n <i'>rcm u lo each cf tMe k feet chosen.

Repeat ',h,,s procedure in <C,> and use these two k-fans, together with suitable pieces cf 1he k cd.

paths in Gk oining <Cu > contracted to a point to <C,> contracted to a point.

This argument is also valid if u and v are in the same C,, the same C~i or one is in a C, and the cther

:n a C)

3. Suppose u~ Y jf and v E Cl or C'j. Without loss of generality, suppose v z CI. Since G'k Is

k-connected, there exist k o.d. u - v paths in G'k and using the argument of Case 2. we can find 'Ko~

u - v paths in Gk.

4. If (u,v} c Y j I X , then k od. u - v paths are found using the k-connectedness of G'k and :he

fact that all <Ce's are themselves k-connected.
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So it remains to treat the cases when at least one of u and v is a midpoint. Note that in Gk , the

midpoints have degree k i they lie between Y and Z or between Y' and Z, and they have degree k + 1

i they lie between X and Z or between X and Z .

First suppose both u and v are midpoints in G"k . ..

Let us now first consider the case when u and v are adjacent to the same <Ci> (or <Ci>). Then u

and v are adjacent to at least k-1 different points of Ci respectively. By Menger's Theorem there are at

least k-1 o.d. u - v paths in the subgraph -,Ci  - {u,v}> of Gk. Call them P1 ..... Pk-1. Also since G'k is

2- connected, there is a cycle N in G'k containing the lines Lu and Lv (whose midpoints are u and v)

and hence N - Lu - Lv is a path which may be used to construct a path Q joining u and v which is openly

disjoint from all the Pi's. Thus {P1,.... Pk-1, Q} is the desired u - v k-skein.

Now suppose u and v are adjacent (as midpoints) to different <Cj>'s, say Cu and Cv respectively.

Now in G'k the 2. points corresponding to the contractions of < Cu > and < Cv > are joined by k o.d.

paths. Call them P. Pk One of these - say P1 - uses line Lu. Choose k-i distinct feet of u in Cu

Call this set U1 . Also for each path Pi, i ;- 1 , choose exactly one foot in Cu . Call this set U2 . We then

have U1 kJ U2 - Cu, U1 r- U2 - ') and ul I = 1U21 = k-1. Since <Cu> is (k-1)-connectecl. by Menger's

Theorem there exist k-1 totally disjoint paths in <Cu> joining the points of U1 to those of U2 A similar
'.-

argument applies to <Cv>. Using these paths within <Cu> and <Cv> as well as paths P .  Pk, we can

construct k o.d. u - v paths in G"k

Finally, suppose u is a midpoint in G"k , but v is not. Suppose u is adjacent to <Cu> But this is

even simpler than the proceding case. In G' k , let P1 ... , Pk be k o.d. paths joining the contrac.cn to a

point of <Cu> with point v. As before, let U1 be a set of k-1 feet of u in Cu and choose U2 so that it

contains precisely one foot of each of the rest of the midpoints adjacent to < Cu>. Then JUl I = U2i =

k-1, U1 n U2  (0 and since <Cu> is (k-1)-connected we can proceed as before to get k o.d. u - v

paths.

This completes the proof that G"k is k-connected.
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Now insert the Al's, A'i's, (arnd 8 and B' L2 it k~ 1 (nod 4)) into Gk Also insert points t
2 2

and b' together with their respective k-tans to B L3and 8' .But do not join b and b' yet.
2 2

Actually, we will now show that Gk - b- b' is k-connected. So suppose (u.'4 V(Gk) - 'bbt'J

Suppose u,v n(AA u )-' , tor al ijand~uvrB (U n k *D nen k

(mod 4). Then since G'k is k-connected "here are k 0.1. u -v paths P,, - ,, n G-, Sirce atl

<A,>s, <AJi>'S, B y arnd B' are connected, paths P1 . Pk give nse to k ad. .altis :k2i

joining u anid v in Gk

Before proceeding to the next case, we sate and prove the following statement.

Clim (a) If y-1 -- Y correspond-s to inserted subgracri A, respectively B L,,.n Gk ar- f~
2

Lk arr- !he k lines inddent with y iin G'k -then given any point u --A, (respecivefy 2 3 ~ r exs,-c

a k-fan in A, (respectively B k- ) which can '.,e extended to a k-an cining i lo :he rizz:cir,,s :t -

2
Lk.

(b) Analogous statements hold for y1i Y' with rescect :o A', respeciveiy 3'

Proof of Claim. We prove only part ',a as ib) is proved in ;ust the same wvay &p-;pcse v -cr-e22c-s

to A,1 Choose any point u -cAi . Then u is one of exactly tvo teet :n Ai of some riccirt i, .Cc

w is the other of these Vtwo feet. Farm a set U of k pcints ty nc!uding 'N ar- -X3C*!y C:re CT --3'A*

of ail the other k-1 midpoints adjacent to A, . Then since u E U and <A,> :s k-zccnnectec, 'here .2x:s:s3

fan of p,. s from u to each of the k points in U which in turn 'eads to he k-ian scugrit.

Now suppose y,, corresponds to B That is, yi y k, Let u B Th- -1-ere are .c ~~
2 2 2

to consider.

w J, .



First suppose u is the foot of new point b. Then since u is not a foot of any of th~e miudpoints of L1,

Lk and since 8B- is k-connected, there is a k-fan of paths from u to the (unique) foot of each L1 in
2

B There are k such feet and this fanciearty extends to one from u to each of the k mnidpoints of
2

.I -,Lk.

So suppose u is the foot of some Lj in B Without loss of generaity, suppose u is the loot of
2

L Then since B is k-connected, there is a fan at u to the feet in B of each of the k - 1 ines

L2,. Lk . These k - 1 paths, together with the line from the foot of L1 to the midpoint of L, cte arly

extends to a f an wror u to the midpoint of each of 11,Uk as desired. This completes !he proof :,f Ihe

2. Now suppose at least one of u,v liesin an A, Aj, B or B' but that u and v roct
2 2

both iie in the same one of these sets. Since G>k is k-connected, there are k od. u - v :athis n 23>

which together with the fans guaranteed by the acove Caim. where necessary. yield k o C. U - v :a* 7s

3. ith 11i and v i en *he samne <.A,> <A'I> -s K- > r <3' ' hen s~r-,ce adl vr :-es
2 2

Sutgraphs are K-cnnected, ',here exist K o d. u -v paths as cdesired.

T-hus Gk - b - b. is -c:cnnected. .I emains 7iow lo add -rents t and t' cin *,nem ,c -k ociris

3 3 and B' k-2 as Iescrte- earlier 2u: .f &ve Icin n 10 ts -k. pcints, :he reSuqirg g;rn Z:k, S

2 2

K-connecteC ty Mergers 7Theorem and !hen ;cnrng n ',o 'IS .4ertcr h 1~~g ro

K-onete y :hre same reascrirg ESJ ThIen 3ccrg 're =on ve :o-tajr C23, 'vr'Cn rus*, O

K,-ccnnected C:early Gi, is k - .- regular

F~inally ie -icte *That *nviaA',i *Ie .k :Y-,ints ::f Z ie 2n -c :-crrncn -c',e .n Csce 2r JIM ~

tndependent Set and "PVj, Z 7'=Y 'r X; .



19

G.A. Dirac

1960. In abstralten Graphen vorlhandene vollstandige 4-Graphen und ihre Unterteilungen,

D.A. Holton

W92. Cycles through specified vertices in k-connected regular graphs, Ars Combinatoraa
L3,1982, 129-143.

1983. Cycles in graphs, Combinatorial Mathematics X (Proceedings, Adelaide 1082).
Lecture Notes in Math. Vol 1036, Springer-Verlag, Berlin, 1983, 24-48.

C.A. Holton, S.D. McKay, M.D. Plummer and C. Thomassen

1982. A nine point theorem for 3-connected graphs, Cotrtcia 2. 1982, 53-632.

A.K. Kelmans and M.V. Lomonosov

1982a. When m vertices in a k-connected graph cannot be walked round along a simple cycle.
DmsreteMathl., 38, 1982, 317-322.

?982b. On cycles through given vertices of a graph, Abstracts Amer. Math. Soc.
No. 82T - 05 - 245, 3,1982, 255. '

IN D. MCCuaig and M. Rosenfeld

1984. Cyclability of r-regular r-connected graphs, Bull, Austral. Math. Scc. 29.1984, -1

3.H J. Meredith

1973. Regular ri-valent n-connecied non-Hamiltonuan non-n-edge colorable crapris,

Ccmrnn Thei Ser. B. 14, 1973, 55-60.

M.C Plummer

1983 Some recent results on cycle traversailily in graphs. Ann. Ciscrete 01th, 20. '983, 255
262.

D L. Wang and D.J. Kleitman

1973. On the existence of n-connected graphs with prescrited degrees n - 21,, Np .%'crrt5 s.
1973, 225-229.



..-.- - 8 8 8 .. 8 --8 .8 - A .i -. S. ~A ~S -.

p.

p.

r

8*

8~

8~8 * .. -p %~%~*~ C
4 8

S~ ~ '~ ' ~


